
X.509 and SSL

A look into the complex
world of X.509 and SSL

http://www.phildev.net/ssl/

USC Linux Users Group
4/26/07

Phil Dibowitz
http://www.phildev.net/

The Outline

● Introduction of concepts
● X.509
● SSL
● End-User Notes

 (from personal users to sysadmins)
● Certificate Authority Notes
● Comparisons to PGP

Introduction: Basics

Lets start with the basics:

X.509 != SSL
SSL != PKI
PKI != RSA

and so on.

Introduction: PKI

● Public Key Infrastructure
● No need for shared secret
● Examples: RSA/DSA/PGP
● Allows separation of privilege / liability

limitation
● Can safely distribute public key
● Distributing your public key means

anyone can encrypt to you and verify
your work

Introduction: PKI Operations

● Signing
Use private key to “sign” data

● Verification
Use public key to verify “signature”

● Encryption
Use public key to encrypt data

● Decryption
Use private key to decrypt data

Introduction: X.509

● X.509 is one of many standards for PKI
● Determines a format for certificates,

keys, revocations, and others pieces
● Derived form X.500
● PKIX = Public Key Infrastructure X.509

Working Group

Introduction: SSL

● A protocol for establishing secure
communication

● Built on X.509 to build encrypted
“tunnels”

● Slowly being deprecated by TLS
● TLSv1 and SSLv3 are roughly the same
● Used every time you see the 'lock' in

your browser
● Usually using RSA

Introduction: Putting
It all together

● SSL sits on X.509
● X.509 sits on PKI

● Applications can then be wrapped in SSL
for security

X.509
● Keypairs
● Certificate Signing Requests (CSR)

(PKCS#10)
● Certificates (CRT) (PKCS#7)
● Certificate Authorities (CA)
● Extensions
● Certificate Revocation List (CRL)
● PKCS#12 – private and public key in one

object

● Note: single “trusted” authority, unlike
PGP web-of-trust

X.509: Keypairs

● X.509 is a PKI standard
● That means keypairs
● All PKI standards start with a public and

private key, aka keypair
● X.509 is usually RSA. Sometimes DSA.

X.509: CSR

● Certificate Signing Request
● Generally the form the public key is

generated in when using most X.509
tools

● Unsigned Certificate: public key
embedded in metadata

● Signed by private key
● Additional verification usually required

by CA in order to sign
● Sent to CA to request certificate

X.509: CSR Example 1
Certificate Request:
 Data:
 Version: 0 (0x0)
 Subject: C=US, ST=California, L=Los Angeles, O=Insanity Palace of Metallica,

CN=mail.ipom.com/emailAddress=phil@ipom.com
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 RSA Public Key: (1024 bit)
 Modulus (1024 bit):
 00:b9:ac:cc:61:1e:29:b4:73:b8:cf:a3:cb:a0:eb:
 85:e5:60:52:33:fc:94:93:6d:7c:11:c4:d8:5b:ae:
 51:37:c3:53:ec:d9:31:cf:a8:55:a2:5c:5c:3f:21:
 4b:19:94:d3:79:94:6a:e5:d9:29:c9:3d:d2:71:f6:
 a8:aa:38:ff:dd:df:21:59:3b:60:ab:1f:3d:f3:c8:
 b7:26:d7:be:a7:86:f1:db:1c:01:6c:23:41:a7:86:
 d4:78:96:b5:b7:af:ea:d9:b5:5e:30:37:cc:dd:1a:
 eb:2c:4a:4e:48:2d:16:94:cd:c8:a3:d5:97:77:13:
 f8:17:f1:17:67:44:75:5c:a7
 Exponent: 65537 (0x10001)
 Attributes:
 a0:00
 Signature Algorithm: md5WithRSAEncryption
 54:78:be:74:b1:d7:87:bc:aa:6c:ba:44:94:0e:7f:6e:af:1f:
 fc:8e:d0:78:7f:aa:a5:45:ad:6c:bf:c0:d9:5d:21:7d:2a:7b:
 4c:2e:1c:e2:57:d2:50:a2:6d:7c:5a:a8:2f:72:98:99:f7:92:
 83:5f:35:7e:ce:fa:c1:cf:8a:31:99:ad:eb:a8:47:ff:21:d0:
 0a:54:b1:1a:5e:db:7e:30:b1:e6:b6:d0:2d:f4:c9:46:ae:81:
 a3:46:72:3f:e2:6e:09:2c:c6:6f:dd:01:35:d0:c4:13:39:88:
 82:7b:fb:c7:96:7c:b2:2a:bd:6a:03:7b:34:71:76:95:9d:d7:
 a5:39

X.509: CSR Example 2
Certificate Request:
 Data:
 Version: 0 (0x0)
 Subject: C=US, ST=California, L=West Hollywood, O=Ticketmaster, OU=Websys,

CN=metallica.office.tmcs/emailAddress=phil@ticketmaster.com
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 RSA Public Key: (1024 bit)
 Modulus (1024 bit):
 00:be:a0:5e:35:99:1c:d3:49:ba:fb:2f:87:6f:d8:
 ed:e4:61:f2:ae:6e:87:d0:e2:c0:fd:c1:0f:ed:d7:
 84:04:b5:c5:66:cd:6b:f0:27:a2:cb:aa:3b:d7:ad:
 fa:f4:72:10:08:84:88:19:24:d0:b0:0b:a0:71:6d:
 23:5e:53:4f:1b:43:07:98:4d:d1:ea:00:d1:e2:29:
 ea:be:a9:c5:3e:78:f3:5e:30:1b:6c:98:16:60:ba:
 61:57:63:5e:6a:b5:99:17:1c:ae:a2:86:fb:5b:8b:
 24:46:59:3f:e9:84:06:e2:91:b9:2f:9f:98:04:01:
 db:38:2f:5b:1f:85:c1:20:eb
 Exponent: 65537 (0x10001)
 Attributes:
 a0:00
 Signature Algorithm: sha1WithRSAEncryption
 ac:97:ca:4b:3c:c5:f0:32:c8:29:ea:2b:62:e7:39:b5:83:64:
 14:fe:6e:36:d0:7d:f0:73:34:7a:10:0e:d3:21:92:c1:b0:12:
 49:54:c7:f1:4f:c1:d3:51:4f:08:c3:bc:26:15:7d:df:44:44:
 a4:0a:82:e3:0e:9f:7f:fb:4b:9c:3f:a6:bf:59:a9:d6:ef:2e:
 52:dd:be:4d:a1:0d:7a:e7:88:ea:36:da:6d:fe:48:ac:99:51:
 54:8d:04:6c:e5:59:ab:e7:1b:ef:de:66:15:88:b2:4b:94:e3:
 ec:7b:ec:5f:85:6f:17:61:df:b4:3d:9f:b0:8c:78:08:43:2a:
 3f:3d

X.509: CRT

● Certificate
● A CSR signed by a Certificate Authority
● Often contains additional metadata,

usually in the form of additional
extensions

● CA uses its name to tie the public key to
a subject.

● It can alter parts of the certificate before
signing.

X.509: CRT Example 1
Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number:
 e5:ed:04:03:1b:0b:a7:9d
 Signature Algorithm: sha1WithRSAEncryption
 Issuer: C=US, ST=California, O=PhilNet, CN=PhilNet CA v1
 Validity
 Not Before: Apr 22 09:18:53 2007 GMT
 Not After : Apr 21 09:18:53 2008 GMT
 Subject: C=US, ST=California, O=Insanity Palace of Metallica, CN=mail.ipom.com
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 RSA Public Key: (1024 bit)
 Modulus (1024 bit):
 00:b9:ac:cc:61:1e:29:b4:73:b8:cf:a3:cb:a0:eb:
 ...
 Exponent: 65537 (0x10001)
 X509v3 extensions:
 X509v3 Basic Constraints:
 CA:FALSE
 X509v3 Subject Key Identifier:
 92:CE:18:FD:03:AB:33:44:D2:D4:61:C0:A1:56:71:31:57:55:4F:06
 X509v3 Authority Key Identifier:
 keyid:FF:1A:C0:C5:42:8D:4C:67:97:2F:2A:34:E1:10:6C:80:5B:8B:F4:B7

 X509v3 Subject Alternative Name:
 email:phil@ipom.com
 X509v3 CRL Distribution Points:
 URI:http://www.phildev.net/philnet.crl

 Signature Algorithm: sha1WithRSAEncryption
 b4:5a:d7:43:fa:34:60:53:27:94:e0:e0:bc:34:12:e3:72:2d:
 ...

X.509: CRT Example 2
Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number:
 8e:a1:f1:dd:ec:fd:e9:b9:b0:9c:8e:e4:09:e7:ee:96
 Signature Algorithm: sha1WithRSAEncryption
 Issuer: C=US, ST=California, L=West Hollywood, O=Ticketmaster, OU=Systems Engineering, CN=Ticketmaster Phil

Test CA v1/emailAddress=phil@ticketmaster.com
 Validity
 Not Before: May 22 23:39:01 2006 GMT
 Not After : Jan 15 19:28:49 2008 GMT
 Subject: C=US, ST=California, L=West Hollywood, O=Ticketmaster, OU=Websys,

CN=metallica.office.tmcs/emailAddress=phil@ticketmaster.com
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 RSA Public Key: (1024 bit)
 Modulus (1024 bit):
 00:be:a0:5e:35:99:1c:d3:49:ba:fb:2f:87:6f:d8:
 ...
 Exponent: 65537 (0x10001)
 X509v3 extensions:
 X509v3 Key Usage: critical
 Key Encipherment, Data Encipherment, Key Agreement
 Netscape Cert Type:
 SSL Server
 X509v3 Authority Key Identifier:
 keyid:A1:BD:91:24:39:47:DA:FB:CB:D0:E6:16:C5:C5:6E:74:B6:B9:D0:8E

 X509v3 Subject Key Identifier:
 0A:AC:A0:1A:80:3C:F2:CA:80:DF:8A:7A:8D:5D:2D:0C:C5:13:CA:AA
 X509v3 CRL Distribution Points:
 URI:http://www.ticketmaster.com/crl/Ticketmaster%20Phil%20Test%20CA%20v1.crl

 Signature Algorithm: sha1WithRSAEncryption
 68:bd:d3:7f:0b:20:e7:da:d8:15:6d:13:b0:50:a1:60:66:a6:

X.509: CRT Example 3
Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number:
 68:b7:5c:2c:ba:ba:d9:00:91:00:dd:b5:5d:eb:c7:2d
 Signature Algorithm: sha1WithRSAEncryption
 Issuer: C=US, O=RSA Data Security, Inc., OU=Secure Server Certification Authority
 Validity
 Not Before: May 25 00:00:00 2006 GMT
 Not After : May 24 23:59:59 2009 GMT
 Subject: C=US, ST=California, L=West Hollywood, O=Ticketmaster, OU=Web Systems, OU=Terms of use at

www.verisign.com/rpa (c)05, CN=www.ticketmaster.com
 Subject Public Key Info:
 ...
 X509v3 extensions:
 X509v3 Basic Constraints:
 CA:FALSE
 X509v3 Key Usage:
 Digital Signature, Key Encipherment
 X509v3 CRL Distribution Points:
 URI:http://SVRSecure-crl.verisign.com/SVRSecure.crl
 X509v3 Certificate Policies:
 Policy: 2.16.840.1.113733.1.7.23.3
 CPS: https://www.verisign.com/rpa
 X509v3 Extended Key Usage:
 TLS Web Server Authentication, TLS Web Client Authentication
 Authority Information Access:
 OCSP - URI:http://ocsp.verisign.com
 1.3.6.1.5.5.7.1.12:
 0_.].[0Y0W0U..image/gif0!0.0...+..............k...j.H.,{..0%.#http://logo.verisign.com/vslogo.gif
 Signature Algorithm: sha1WithRSAEncryption
 3d:bb:44:3d:a5:11:84:08:46:bf:5b:0c:b7:12:df:a5:21:ad:
 ...

X.509: CA

● Certificate Authority
● A central party all people “trust”

– verify identity
– verify correct key

● End user must have CA public certificate
to verify certificates it signed

● Just a certificate that signs other
certificates

● “Root CA” - CA signed by itself
● “Intermediate CA” - Any CA signed by

another CA

X.509: CA Example 1
Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number:
 e5:ed:04:03:1b:0b:a7:9c
 Signature Algorithm: sha1WithRSAEncryption
 Issuer: C=US, ST=California, O=PhilNet, CN=PhilNet CA v1
 Validity
 Not Before: Apr 22 09:06:18 2007 GMT
 Not After : Apr 21 09:06:18 2010 GMT
 Subject: C=US, ST=California, O=PhilNet, CN=PhilNet CA v1
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 RSA Public Key: (1024 bit)
 Modulus (1024 bit):
 00:bb:41:14:f8:91:06:6d:d7:54:3f:f3:b2:8c:10:
 ...
 Exponent: 65537 (0x10001)
 X509v3 extensions:
 X509v3 Subject Key Identifier:
 FF:1A:C0:C5:42:8D:4C:67:97:2F:2A:34:E1:10:6C:80:5B:8B:F4:B7
 X509v3 Authority Key Identifier:
 keyid:FF:1A:C0:C5:42:8D:4C:67:97:2F:2A:34:E1:10:6C:80:5B:8B:F4:B7
 DirName:/C=US/ST=California/O=PhilNet/CN=PhilNet CA v1
 serial:E5:ED:04:03:1B:0B:A7:9C

 X509v3 Basic Constraints:
 CA:TRUE
 X509v3 CRL Distribution Points:
 URI:http://www.phildev.net/philnet.crl

 X509v3 Subject Alternative Name:
 email:phil@ipom.com
 Signature Algorithm: sha1WithRSAEncryption
 6d:d2:54:7f:81:7a:78:48:ce:ee:df:0c:6a:e8:26:5d:e0:92:
 ...

X.509: CA Example 2
Certificate:
 Data:
 Version: 1 (0x0)
 Serial Number:
 70:ba:e4:1d:10:d9:29:34:b6:38:ca:7b:03:cc:ba:bf
 Signature Algorithm: md2WithRSAEncryption
 Issuer: C=US, O=VeriSign, Inc., OU=Class 3 Public Primary Certification

Authority
 Validity
 Not Before: Jan 29 00:00:00 1996 GMT
 Not After : Aug 1 23:59:59 2028 GMT
 Subject: C=US, O=VeriSign, Inc., OU=Class 3 Public Primary Certification

Authority
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 RSA Public Key: (1024 bit)
 Modulus (1024 bit):
 00:c9:5c:59:9e:f2:1b:8a:01:14:b4:10:df:04:40:
 ...
 Exponent: 65537 (0x10001)
 Signature Algorithm: md2WithRSAEncryption
 bb:4c:12:2b:cf:2c:26:00:4f:14:13:dd:a6:fb:fc:0a:11:84:
 ...

X.509: CA Example 3
Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number:
 75:33:7d:9a:b0:e1:23:3b:ae:2d:7d:e4:46:91:62:d4
 Signature Algorithm: sha1WithRSAEncryption
 Issuer: C=US, O=VeriSign, Inc., OU=Class 3 Public Primary Certification Authority
 Validity
 Not Before: Jan 19 00:00:00 2005 GMT
 Not After : Jan 18 23:59:59 2015 GMT
 Subject: C=US, O=VeriSign, Inc., OU=VeriSign Trust Network, OU=Terms of use at https://www.verisign.com/rpa (c)05,

CN=VeriSign Class 3 Secure Server CA
 Subject Public Key Info:
 ...
 X509v3 extensions:
 X509v3 Basic Constraints: critical
 CA:TRUE, pathlen:0
 X509v3 Certificate Policies:
 Policy: 2.16.840.1.113733.1.7.23.3
 CPS: https://www.verisign.com/rpa
 X509v3 CRL Distribution Points:
 URI:http://crl.verisign.com/pca3.crl
 X509v3 Key Usage: critical
 Certificate Sign, CRL Sign
 Netscape Cert Type:
 SSL CA, S/MIME CA
 X509v3 Subject Alternative Name:
 DirName:/CN=Class3CA2048-1-45
 X509v3 Subject Key Identifier:
 6F:EC:AF:A0:DD:8A:A4:EF:F5:2A:10:67:2D:3F:55:82:BC:D7:EF:25
 X509v3 Authority Key Identifier:
 DirName:/C=US/O=VeriSign, Inc./OU=Class 3 Public Primary Certification Authority
 serial:70:BA:E4:1D:10:D9:29:34:B6:38:CA:7B:03:CC:BA:BF
 Signature Algorithm: sha1WithRSAEncryption
 c3:7e:08:46:5d:91:36:cf:67:dc:d7:a7:af:af:b8:22:c3:8b:
 ...

X.509: Extensions

● Subject Key Identifier (SKID) – a hash of
the public key

● Authority Key Identifier (AKID)
– A hash of the Issuer's public key (CA's SKID)

and/or
– The issuer and serial number of the CA

● CRL Distribution Point – where do I find
revocation information?

● Extensions that define key usage
limitations: Basic Constraints, X509v3
Key Usage, Netscape Cert Type

X.509 Extensions

● Subject Alternative Name – additional
hostnames, email address, IP Addresses
and more to associate with the cert

● Critical Extensions: Fail if you don't
understand it.

X.509 CRLs

● A list of certificates revoked by a CA
● Contains expiration date
● Signed by CA's private key
● Shouldn't be SSL protected (circular

problem)

X.509 CRL Example

Certificate Revocation List (CRL):
 Version 2 (0x1)
 Signature Algorithm: sha1WithRSAEncryption
 Issuer: /C=US/ST=California/L=Hawthorne/O=PhilNet/CN=PhilNet CA
 Last Update: Mar 3 23:16:49 2007 GMT
 Next Update: Mar 10 23:16:49 2007 GMT
 CRL extensions:
 X509v3 CRL Number:
 1
Revoked Certificates:
 Serial Number: E5FE840E9495462E
 Revocation Date: Sep 14 01:19:48 2006 GMT
 Signature Algorithm: sha1WithRSAEncryption
 3f:f2:76:52:dd:30:4e:a6:6b:a0:b6:4d:99:af:b5:fa:e3:5e:
 f4:d0:c1:36:d9:76:cf:88:19:5b:79:e3:69:a4:f6:4c:8a:be:
 2e:82:af:2f:7b:20:8e:8c:7c:01:9d:59:ea:17:6e:63:c1:53:
 85:94:da:40:0c:b6:9c:ab:13:18:04:b9:12:f6:d8:57:7f:03:
 cd:9a:3d:36:f7:11:f6:01:f6:59:95:1a:77:e6:5e:9d:dd:10:
 6f:04:a9:7b:b4:7b:5c:31:f3:4d:37:a6:c4:6f:45:11:b7:45:
 80:d4:42:ee:4b:96:fb:c5:17:78:f8:e1:89:af:a9:05:cd:22:
 0a:63

SSL

● Secure Sockets Layer
● Being deprecated by TLS
● SSLv3 is roughly equivalent to TLSv1
● TLS = Transport Layer Security
● SSL/TLS is a way to verify the part you

connect to and create an encrypted
tunnel for security communication

● Also allows for client authentication

SSL: Negotiation

● Client connects to server
● Server provides certificate (and

optionally, certificate path)
● Client verifies certificate using own

trusted roots
● Optionally: client provides certificate

and server verifies
● Client uses server public key to encrypt

symmetric key and send it to server
● This new key used to encrypt session

SSL: Negotiation
● OK, maybe there's a few more steps...

SSL: Negotiation: CAs

● Client (and server if using client auth)
MUST already have a copy of the root
CA and trust it to verify cert.

● Intermediate certs MAY be passed with
certificate

● SSL Server Authentication: intermediate
certs are not usually passed, but may
be (i.e. new verisign CA cert)

● SSL Client Authentication: intermediate
certs are usually passed

SSL: Certificate Verification

● Is the certificate valid (not expired?)
● Is the certificate signed by a CA we trust

(or does it at least lead up to one we
trust)?

● Is that signature (and all signatures in
the chain) valid?

● Optionally: is the certificate revoked?
(involves retrieving and verifying CRL)

SSL: Wait... symmetric key?

● Computationally easier and quicker
● Different key each time adds security
● In many cases client doesn't have a key,

so a key would have to be generated
anway

End-User Notes

● OpenSSL is devided into several
subcommands:
– req – PKCS#10 / CSRs
– x509 – certificates
– crl – revocation lists

● Most options are the same across
subcommands:
– -inform – Is the file passed to '-in' in PEM or DER

format
– -in – read this file
– -noout – don't print the actual cert/crl/csr
– -text – print out the text of what's in the object

End-User Notes: Commands
● Create keypair:

 openssl req -newkey rsa:1024 -keyout server.key \
 -out server.csr

● This creates a private key, and a CSR
with a public key in it

● If you already have a private key key:
 openssl req -key server.key -out server.csr

● To view your key:
 openssl rsa -noout -text -in server.key

● To view your csr:
 openssl req -noout -text -in server.csr

● To view your crt:
 openssl x509 -noout -text -in server.crt

End-User Notes: Commands

● Verify a certificate against a CA
 openssl verify -CAfile ca.crt server.crt

● What if there's a CA-chain?
 cat root-ca.crt sub-ca.crt > bundle.crt
 openssl verify -CAfile bundle.crt server.crt

● Get subject “hash”
 openssl x509 -noout -hash -in server.crt

End-User Notes: HTTPS

● For Apache HTTPS Server
– SSLCertificateFile – Server's certificate
– SSLCertificateKeyFile – Matching private

 key
– SSLCertificateChainFile – Intermediate

 CAs
– SSLCACertificateFile – Do NOT put

 intermediate CAs here. Verisign
 recommends here, but here == bad.

End-User Notes: HTTPS
● For Apache accepting HTTPS Clients

– SSLCACertificateFile - Valid CAs client
 certs may be signed with. Like the CAs in
 your browser.

– SSLCARevocationFile – CRL bundle to use
 when validating client certificates

– SSLCADNRequestFile – CAs names to
 send to the client as allowable CAs (so a
 client may select one if they have
 multiple)

– SSLVerifyClient – Set to
 none/optional/required

– SSLVerifyDepth – How deep down the
 rabbit hole are you willing to go?

End-User Notes: Private Keys

● Keep your private key private!
● Where possible, keep it encrypted
● If not encrypted, mode 400
● If your company relies on PKI, consider a

keystore (i.e. Ingrian)
● Report key compromises to the CA

immediately so the cert may be
revoked

CA Notes

● Being a CA is a lot of responsibility
● Verification, policy, etc.

● There are two ways to build an OpenSSL
CA
– The standard way
– The PKIX way

CA Notes: PKIX

● PKIX says that email address should not
be in subject

● PKIX says that email address should be
in SubjectAltName

● PKIX says lots of things, but this one is
tricky with OpenSSL, unfortunately.

● We'll violate one PKIX rule: critical
extensions.

CA Notes: Preparation

● This is the same for both methods:
– mkdir -p CA/{certsdb,certreqs,crl,private}
– chmod 700 CA/private
– touch CA/index.txt

● In your new CA directory, make a copy
of your system openssl.cnf

● Modify your openssl.cnf...

CA Notes: Preparation
● Set paths...

– dir = <path_to_CA>
– certs = $dir/certsdb
– new_certs_dir = $certs
– database = $dir/index.txt
– certificate = $dir/cacert.pem
– serial = $dir/serial
– crldir = $dir/crl
– crlnumber = $dir/crlnumber
– crl = $crldir/crl.pem
– private_key = $dir/private/cakey.pem

● Many systems use various names for
these directories, so we must make sure
we adjust to what we made

CA Notes: Preparation

● Set various options...
– Section for extensions

● x509_extensions = usr_cert
– Expirations

● default_dates = 365
● default_crl_days = 30

– Honor Extensions In Request
● copy_extensions = copy

– Set a policy
● policy = policy_match
● More on policies in a bit...

CA Notes: Preparation
● Set Extensions

– Recall, we set 'usr_cert' as the place x509 extensions
are stored

– So, under “[usr_cert]”:
● basicConstraints=CA:false
● subjectKeyIdentifier=hash
● authorityKeyIdentifier=keyid,issuer
● crlDistributionPoints=URI:http://example.com/ca.crl

– We'll also define an additional extension section for
signing CAs (probably only ourself)

– Under “[v3_ca]”
● basicConstraints=CA:true
● subjectKeyIdentifier=hash
● authorityKeyIdentifier=keyid:always,issuer:always
● crlDistributionPoints=URI:http://example.com/ca.crl

CA Notes: The standard way

● Create keypair:
– openssl req -new -keyout private/cakey.pem -out \

careq.pem -config ./openssl.cnf
● Self-sign:

– openssl ca -create_serial -out cacert.pem -days 365 \
-keyfile private/cakey.pem -selfsign -extensions \
v3_ca -config ./openssl.cnf -infiles careq.pem

● Note
– -create_serial and -selfsign
– Possible in one step with 'req', but then

you can't use -create_serial

CA Notes: Let's have a look...
$ openssl req -noout -text -in careq.pem
Certificate Request:
 Data:
 Version: 0 (0x0)
 Subject: C=US, ST=California, L=Hawthorne, O=PhilNet, CN=test/emailAddress=phil@ipom.com
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 RSA Public Key: (1024 bit)
 Modulus (1024 bit):
 00:f9:c6:90:7f:07:14:ad:15:a9:be:ee:f0:27:d5:
 ef:d3:cf:16:ec:72:32:1e:86:7f:90:8f:85:50:e4:
 0b:cd:f1:8a:00:dc:a3:f1:e2:bb:8d:44:75:bf:a8:
 bf:72:55:f6:3c:06:a9:e9:d5:6a:38:7f:6b:01:31:
 cc:15:fb:1b:2b:d3:9e:f7:e1:0d:53:cb:7f:42:fc:
 ba:d4:af:a8:ac:6e:8c:59:c2:dd:d9:e5:27:b0:3a:
 c2:ab:25:26:1e:77:36:be:32:ea:e6:94:30:0b:96:
 7b:36:92:8c:5c:ee:ad:69:52:8f:23:83:42:34:8a:
 66:da:f8:44:da:13:1a:f7:8f
 Exponent: 65537 (0x10001)
 Attributes:
 a0:00
 Signature Algorithm: sha1WithRSAEncryption
 6c:a2:2b:b9:5a:5b:ca:90:f1:c5:a5:16:87:ca:a2:90:8b:74:
 07:ad:db:6e:6f:53:2b:97:24:a7:56:95:b4:e6:5f:2e:88:8b:
 ba:0e:ac:00:99:3d:16:18:a4:8c:41:f2:2c:69:48:a8:38:56:
 37:a0:ed:91:bd:53:79:ef:13:10:57:ba:bf:89:48:52:1d:93:
 72:18:c1:ce:f8:e7:da:d8:b0:3e:a0:8f:f8:d3:4a:6c:f8:72:
 62:0b:53:07:d5:f5:90:5e:dc:d3:94:87:34:9d:e4:e5:b9:fc:
 f3:f2:c6:dd:5c:58:9b:5c:b4:33:b2:f5:5a:57:42:9f:89:69:
 d0:71

CA Notes: Let's have a look
$ openssl x509 -noout -text -in cacert.pem
Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number:
 b9:bf:e9:b1:55:b9:ad:68
 Signature Algorithm: sha1WithRSAEncryption
 Issuer: C=US, ST=California, L=Hawthorne, O=PhilNet, CN=test/emailAddress=phil@ipom.com
 Validity
 Not Before: Apr 22 02:26:20 2007 GMT
 Not After : Apr 21 02:26:20 2008 GMT
 Subject: C=US, ST=California, L=Hawthorne, O=PhilNet, CN=test/emailAddress=phil@ipom.com
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 RSA Public Key: (1024 bit)
 Modulus (1024 bit):
 ...
 Exponent: 65537 (0x10001)
 X509v3 extensions:
 X509v3 Basic Constraints:
 CA:TRUE
 X509v3 Subject Key Identifier:
 8A:D1:CD:4F:23:F6:86:81:57:04:F8:62:50:5E:1D:47:8B:02:69:CF
 X509v3 Authority Key Identifier:
 keyid:8A:D1:CD:4F:23:F6:86:81:57:04:F8:62:50:5E:1D:47:8B:02:69:CF
 DirName:/C=US/ST=California/L=Hawthorne/O=PhilNet/CN=test/emailAddress=phil@ipom.com
 serial:B9:BF:E9:B1:55:B9:AD:68

 X509v3 CRL Distribution Points:
 URI:http://alt.home.pv/philnet_ca.crl

 Signature Algorithm: sha1WithRSAEncryption
 ...

CA Notes

● Perfectly good CA
● It can sign certs, generate CRLs, etc.
● But... it's not PKIX compliant!

● Looking at man page...
– Generate proper req with

SubjectAltName=email:move ?
– We also may play with copy_extensions...

CA Notes: PKIX

● Under “[req]” set
– req_extensions = v3_req

● Under “[v3_req]” do
– “SubjectAltName=email;move”

● This says make SubjectAltName in req
● And try it again...
● Looks good...

CA Notes: PKIX

● Looks good
– Issuer: C=US, ST=California, L=Hawthorne,

O=PhilNet, CN=test
– Subject: C=US, ST=California, L=Hawthorne,

O=PhilNet, CN=test
– X509v3 Subject Alternative Name:

 email:phil@ipom.com
● Even CSR looks good:

– Subject: C=US, ST=California, L=Hawthorne,
O=PhilNet, CN=test

– Requested Extensions:
X509v3 Subject Alternative Name:

email:phil@ipom.com

mailto:phil@ipom.com

CA Notes: PKIX
● Important Notes

– If you request the extension in x509_extensions,
but don't set a value in req_extensions, SAN will be
blank (not in Subject to be copied from).

– req_extensions can't have AKID, crlDP, or other
extensions only a CA can set. These must be in
x509_extensions

– With “subjectAltName = email:move” under
“usr_cert” any certificate with SAN will LOOSE it
upon signing (moving 'null' from Subject to SAN)!!

– Same thing for v3_ca and signing future
subordinate CAs!!

– Without them, non-PKIX CSRs won't become PKIX
upon signing!!

– Suck... need multiple extension profiles

CA Notes: PKIX

● Extension Profiles Needed
– usr_cert
– usr_cert_has_san
– v3_ca
– v3_ca_has_san

● “has_san” ones don't do
“subjectAltNames=email:move”

CA Notes: Policies

● Policies determine criteria for a CSR
before signing it

● For each piece of the Subject, you can
specify optional, supplied, or match
– Optional – we don't care if it is there
– Supplied – It has to be there, we don't care what

it is
– Match – It must match the CAs exactly

CA Notes: Policies

[policy_match]
countryName = match
stateOrProvinceName = match
localityName = supplied
organizationName = match
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

CA Notes: Policies

[policy_anything]
countryName = optional
stateOrProvinceName = optional
localityName = optional
organizationName = optional
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

CA Notes: Signing Certs
● Signing certificates

– Put the CSR in certreqs/<name>.csr
– openssl ca -config ./openssl.cnf -infiles \

 certreqs/<name>.csr
– Cert is in certsdb/<serial>.pem

● Read and Verify the information
presented.

● Default extensions are in “usr_cert”,
default policy is “policy_match”

● Override with “-extensions v3_ca” or
“-policy policy_anything”

CA Notes: Revoking Certs

● To revoke a cert, first choose a reason:
– unspecified
– keyCompromise
– CACompromise
– affiliationChanged
– superseded
– cessationOfOperation
– certificateHold

● Find the cert in certsdb and revoke
– openssl ca -config openssl.cnf -crl_reason \

superseded -revoke certsdb/<serial>.pem
● Don't forget to generate CRL!

CA Notes: Generating CRLs

● Easy as cake:
– openssl ca -config openssl.cnf -gencrl -out \

crl.pem
● Get it somewhere where people can find

it. i.e. crlDP

Modifying Your CA

● Modifying your CA is possible
● Sometimes called 'reconstituting' the CA
● Usually done for a new crlDP or

signingPolicy

● Simply re-(self-)signing the CA
Certificate

● Old certs should still validate, but won't
have new info

● BE CAREFUL WITH THIS!

X.509 Compared to PGP
● PGP

– Web of trust
– No central authority
– You decide who you trust
– Money is rarely involved

● X.509
– Central Authority
– You can only choose authorities:

● But only sorta – you kinda have to trust the
ones most people trust (Verisign, Thawte)

– In some cases you can choose specific
people/entites/certs – but the system isn't
designed for it

– Money is usually involved
– Less work for users

Reading and References

● RFC 3280 – X.509 Certificates and CRLs
ftp://ftp.rfc-editor.org/in-notes/rfc3280.txt

● RFC 4346 – TLSv1 Spec
ftp://ftp.rfc-editor.org/in-notes/rfc4346.txt

● Netscape SSLv3 spec
http://wp.netscape.com/eng/ssl3/3-SPEC.HTM

● RFC4158 – Certificate Path Building
ftp://ftp.rfc-editor.org/in-notes/rfc4158.txt

● And of course...
http://www.phildev.net/ssl/

The End!

● Thanks for your time
● Questions?

