
PGP: What, Why, When, Which,
How, and More...

USC Linux Users Group
11/17/05

Phil Dibowitz

What We Will Cover

● (Briefly) What PGP is
● Why to use PGP
● When to use PGP
● Which kind of PGP to use and when

(Traditional vs PGP/Mime)
● How to use PGP
● PGP Web of Trust
● Comparisons to X509/SMIME

What We Won't Cover

● How encryption works
● How digital signatures work
● How PGP differs, cryptographically, from

other methods

What is PGP?

● Pretty Good Privacy
● I'm not a history professor
● Non-centralized

WHY?

● Why should I use PGP?

Why: What Can I Do With It?

● Encrypt data to yourself or others
● Digitally verify both unencrypted and

encrypted data: authenticity of content and
author

● Protect your data
● Protect yourself

Let's see how...

Why: Protecting Your Data

● Keep your passwords in one secure place

 gpg –encrypt passwords.txt

Creates passwords.txt.gpg

 gpg –decrypt passwords.txt.gpg

With a passphrase and the key (2-piece
auth!), this dumps the contents to stdout

● Assumes you have keys setup

Why: Protecting Your Data

● Encrypted email – without the key and the
passphrase – no one can read that email

● Lots of support:
 Thunderbird+Enigmail
 Outlook+GPGol
 Apple Mail+GPGMail
 Mutt
 Pine+Pine Privacy Guard
 Evolution

Why: Protecting Yourself

● Managers: Directives can't be modified or
forged

● Employees: Have proof directives were sent

● “Shutdown server X”
● “Sure, give away my ticket, I can't make it”
● “You have to remove file X to break the

deadlock”
● “Peter is the new guy, he should be granted

access to the data center.”

WHEN?

● When should I use PGP?

When: Encryption

● When you need it:

● Distribute new passwords
● Encrypt your personal password store
● Directives with sensitive data
● Credit card numbers
● Personal messages having to go through

untrusted 3rd parties
● Telling your girlfriend in the next office

something, erm, “personal” via work email

When: Signing: Sometimes

● The sometimes argument

● Signed messages came from you
● Signed messages weren't modified in transit

● Unsigned messages might be from you,
might not

● Unsigned messages might be modified in
transit, might not

● Still vectors for attack

When: Signing: Always

● The always argument

● All messages are from you, unmodified
● Unsigned messages can just be /dev/null'd,

or treated with high-suspicion
● Why not sign?

● But... what about all that ugliness? What
about people who can't do PGP verification?
And what kind of PGP to use?

WHICH?

● Which type of PGP email should I use?

Which: Traditional vs PGP/Mime

● Traditional, aka, “clear-signed” - just a PGP
header and footer, and a signature below
that – all in the body of the email or
document.

● PGP/Mime splits the body and the signature
up so the user only sees the body if he
doesn't have PGP support (plus a small
attachment)

Which: Traditional

-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1

this is text
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.2 (GNU/Linux)

iD8DBQFDeF2TN5XoxaHnMrsRAv3TAJ9uhsXwvjGORVw166wQuwH8ElceNQCePwiG
0LEN3fzdySwp7OBDZXf8SkE=
=6jIy
-----END PGP SIGNATURE-----

Which: PGP/Mime

this is text

● assuming MIME support (everything but Outlook
Express)

Which: Traditional

● PROS
● Simple: Just text in the body
● Anything can read the message
● Don't need MIME or modern mail readers
● Can be easily verified by news readers, web-

based readers, etc.

CONS
● Messy – hard to read the message without

PGP support
● Obsolete

Which: PGP/Mime

● How does it work? Split the message into
two parts using MIME:

● Body:
Content-type: text/plain
(implies Content-disposition: inline)

● Signature:
Content-type: application/pgp-signature
Content-disposition: attachment

● RFC's 3156, 2015, 2046

Which: PGP/Mime

● PROS
● Anything with MIME support sees the

message clearly, with the signature as an
insignificant attachment (for PGP-inept)

● Can sign a forwarded message with a
signature in it easily (using MIME-
encapsulation)

● Looks cleaner

● CONS
● Non-MIME compliant readers have trouble

Which: Application/PGP

● Horrible wanna-be standard replaced by
PGP/Mime

● Takes a traditional-signed message
● Body is Content-type: application/pgp

and Content-disposition: inline

● Almost nothing displays properly. Only mutt
1.4x ever supported it. Mutt 1.4x used this
when set to “traditional”...

Which: The Decision

● The decision should ultimately be based on
who your readers are:

● What mail client is most common? What
other mail clients are used?

● Are they going to be doing verification? Can
they install a plugin?

● Once you have that...

Which: Support

Which: No, Really Phil,
Which one?

● Assuming the people who will be verifying can
handle either, how do you piss off the PGP-inept
the least?
If most recipients use:

● Outlook Express: (they need help) Traditional so
they can see your email (but consider only signing
as needed)

● Outlook/Pine (where most people aren't verifying):
PGP/Mime – they'll see a clean message inline

● Outlook/Pine (with most people verifying):
Traditional – only way plugins can verify/decrypt

● Thunderbird/Netscape/Mail/Mutt: PGP/Mime –
clean and verifiable

HOW?

●

I now know Why, When, Which – and I like it!
But how do I do it?

How: Get PGP

● Windows: GnuPG for windows: gnupg.org
● Linux/Solaris/BSD: GnuPG: gnupg.org
● Mac: MacGPG: macgpg.sf.net

How: Create Keys

● $ gpg –gen-key
● Type:

 (1) DSA and Elgamal (default)
 (2) DSA (sign only)
 (5) RSA (sign only)

● Size: 1024 - 4096
● Expiration
● Real Name, Comment, Email

Phil Dibowitz (Work Key) phil@example.com

● PassPHRASE

● More details at http://www.phildev.net/pgp/

How: Now What?

● Now you can:
Encrypt/decrypt/verify/sign files and keys

● OK, but what about email?!

How: MUA Level

● Thunderbird: Enigmail
(enigmail.mozdev.org)

● Apple Mail: GPGMail (www.sente.ch)
● Mutt: Included
● Outlook: GPGol (www.g10code.com)
● Pine: Pine Privacy Guard (quantumlab.net)
● Evolution: Included

Install instructions:
http://www.phildev.net/pgp/

How: MUA Level

● Configure GnuPG: (in ~/gpg.conf):
 keyserver pgp.mit.edu #only one!
 keyserver-options auto-key-retrieve
Most MUA support multiple servers, i.e.
enigmail.
Add as many as you want. pgp.com is good.

● In your MUA Plugin:
● Traditional or PGP/Mime?
● Sign by default?
● Verify by default!

TRUST

● Who do I trust, how do I trust them, and
why?

Trust: Intro

● Unlike in x509/SSL, trust isn't controlled by
one authority

● Down with the man! No expensive
certificates!

● Multiple signatures == better verification
● Verification by people YOU trust
● More trust requires more work
● Multiple “levels” of signing enable fine-

grained trust
● Private and public trust

Trust: Implicit vs Explicit

● Signing someone's key indicates some level
of trust and/or verification of identity

● You can also add local “trust”
● If a key you receive is signed by a key you

have signed, there is implicit trust there
● If a key you receive is signed by a key you

have locally trusted, there is implicit trust
● Signing a key is also implicit trust
● Explicit trust is rarely used, but neat.

Trust: Signing Keys

● Why: To vouch for the identity of one whose
identity you have checked.

● When: Key signing parties, at the office,
when you meet someone interested, etc.

● How: Check 2 forms of ID, check key
fingerprint, and optionally check the email
address, then sign the key and send it to
them

Trust: Verifying Identity

● ID: At least one photo ID, usually two forms
of some ID. You're saying to the world this
key belongs to a person!

● Fingerprint: Verify the key you're signing
has the fingerprint they have on their local
copy.

● Email: (optional) encrypt an email to them
with a secret word of your choosing and a
number they chose. They must email you
back the word and a number you chose.

Trust: Actually Signing

● gpg –sign-key $KEYID --ask-cert-level

Trust options:
● (0) I will not answer. (default)
● (1) I have not checked at all.
● (2) I have done casual checking.
● (3) I have done very careful checking.

● Email or gpg –send-key

● In gpg.conf: “ask-cert-level”

Trust: Local Trust

● To add local trust: gpg –edit-key $KEYID
● From the gpg shell, “trust”

Trust options:
● (1) I don't know
● (2) I do NOT trust
● (3) I trust marginally
● (4) I trust fully
● (5) I trust ultimately

● “save”

Trust: Local Trust

● In general, only trust your keys at 5
● If you know someone does a very thorough

job verifying identify, trust them at 4, and
you'll trust keys they sign even if you haven't
signed their key, or your sig expires

● Local trust is in a trustdb, no one sees it

● Local signing is another way to do local trust,
we won't cover it...

Trust: Calculated Trust

● So.. uh, this key is signed at 3 by a key that's
signed at 2 by a key that's trusted by my key,
which means I, uhm, what?

● It's complicated, and infinitely tunable, but by
default...

● A key is trusted if it meets both:
 1. It is signed by enough valid keys, meaning one of the following:
 * You have signed it personally,
 * It has been signed by one fully trusted key
 * It has been signed by three marginally trusted keys
 2. The path of signed keys leading from K back to your own key is five
 steps or shorter.

Trust: Example 1

● Phil signs Stewie (full)
● Stewie signs Peter (full)
● Peter signs Brian (full)
● Brian signs Meg (full)
● Meg signs Lois (full)

● Phil trusts all of them

Trust: Example 2

● Phil signs Stewie (marginal)
● Phil signs Meg (marginal)
● Phil signs Peter (marginal)
● Meg signs Chris (full)
● Stewie signs Chris (full)

Phil doesn't yet trust Chris...

● Peter signs Chris (full)
● Phil trusts Chris

Trust: Example 3

● Phil signs Stewie (full)
● Stewie signs Meg (full)
● Meg signs Peter (full)
● Peter signs Brian (full)
● Brian signs Lois (full)
● Lois signs Chris (full)

● Phil trusts everyone except Chris

Trust: Example 4

● Phil signs Brian (marginal)
● Phil signs Peter (marginal)
● Brian signs Peter (marginal)

● Phil trusts Peter since he directly signed it,
even though it's “marginal”

Trust: Tunables

● --max-cert-depth n
How deep the chain go and still be trusted

● --completes-needed n
How many completely trusted keys are
needed

● --marginals-needed n
How many marginally trusted signatures are
needed

Trust: Web of Trust

Trust: Web of Trust

Trust: Signatures

● $ gpg –list-sigs phil@ipom.com
pub 1024D/A1E732BB 2003-09-12
uid Phil Dibowitz <phil@ipom.com>
sig 3 A1E732BB 2004-11-20 Phil Dibowitz <phil@ipom.com>
sig 3 X 8CAFF3DF 2003-09-12 Phil Dibowitz <phil@usc.edu>
sig 3 X 96E6F473 2003-09-12 Garrick Staples <garrick@usc.edu>
sig 2 X 819FD62E 2003-09-24 S. Tyler McHenry <tyler@nerdland.net>
sig 3 X E65FF97B 2003-11-03 Ted Faber <faber@lunabase.org>
sig 3 A1E732BB 2003-09-12 Phil Dibowitz <phil@ipom.com>
sig 3 X 808D0FD0 2003-11-24 Don Armstrong <don@donarmstrong.com>
sig 3 X FEA48B61 2003-11-24 Garrick Staples <garrick@speculation.org>
sig 3 X A4B1D0D4 2003-11-25 John Mullins <mullins@usc.edu>
sig 3 X 5811ED5F 2003-11-25 Carl Hayter <hayter@usc.edu>
sig 3 X EBA65398 2003-11-25 Asbed Bedrossian <asbed@usc.edu>
sig 3 X FC2FC9F0 2003-11-26 Chet Burgess <cfb@usc.edu>
sig 3 AE127015 2003-11-23 Todd A. Lyons (Cannonball) <todd@mrball.net>
sig 3 X 6AFD6695 2003-12-01 Linda Savage <lsavage@usc.edu>
sig 3 C730C0E4 2003-12-04 Harry Tanama (nick name pr0gm3r)
<harry_tanama@yahoo.com>
sig 3 X 398D7394 2003-12-05 Brian Emord (no one) <emord@usc.edu>
...

Trust: The Pretty Picture

● I know geeks like the nifty pictures...

● $ gpg –list-sigs | sig3 -d 2 -s 'phil@ipom.com
webmaster@ipom.com' >keys.dot

● $ neato keys.dot -Tps -o keys.ps -v
-Goverlap=scale -Gsplines=true

● $ convert keys.ps keys.jpg
● $ rm keys.ps keys.dot

● Wtf are “sig3” and “neato”?

Trust: Helper Utilities

● sig3 – Written by USC's Carl Hayter
Takes the output of gpg –list-sigs and
creates a data file. Originally sig2dot.

● sig3 is written in Perl, and I'll ask Carl if I can
post it online

● neato is part of the graphviz package
Takes data files and creates postscript plots.

● Convert is part of ImageMagick

COMPARISON: X509/SMIME

● How does it compare?

Comparison: X509/SMIME

● SMIME requires a certificate authority for
your X509 certificates

● One entity must be trusted by everyone, or it
doesn't work

● Usually costs money
● SMIME signatures are vastly longer...

Comparison: X509/SMIME

● MIAGCSqGSIb3DQEHAqCAMIACAQExCzAJBgUrDgMCGgUAMIAGCSqGSIb3DQEHAQAAoIIGFjCCAs8w
ggI4oAMCAQICAww++jANBgkqhkiG9w0BAQQFADBiMQswCQYDVQQGEwJaQTElMCMGA1UEChMcVGhh
d3RlIENvbnN1bHRpbmcgKFB0eSkgTHRkLjEsMCoGA1UEAxMjVGhhd3RlIFBlcnNvbmFsIEZyZWVt
YWlsIElzc3VpbmcgQ0EwHhcNMDQwNTA0MDMyMDAyWhcNMDUwNTA0MDMyMDAyWjBDMR8wHQYDVQQD
ExZUaGF3dGUgRnJlZW1haWwgTWVtYmVyMSAwHgYJKoZIhvcNAQkBFhF3YXNzYUBtZW1waGlzLmVk
dTCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBANm8wiPSE3aeqFpA2o/adOYCZa2T7oHi
fjZE8IIK2EXtgcBZmC2AmmPvPQTtU3sB4AV4bBaKT75qefvNQMSYS2mZjTuCiUSFvLgL8J/pTwBf
GWquvXJH+Q57e1mqkSTKoqSRWwA2GsZ1u7YytAaeiyB5p3FiWHC/zOT8V0CB9NYFqn4rNvL5NlEn
keK4y42/aMDX0XdywR+Bep1vUfRMBIIudq/f49hLUgDbfuY5x44Z/RXbjBH6eCIhCmyhgmRD/fcg
/cHwkwESa4Hisz3UErTsrZShEkuloG8W5SJSRFzXh3hqOibQxiU2bN0Gq3q9UD3kBFuXOuG2PGVL
oha/QfUCAwEAAaMuMCwwHAYDVR0RBBUwE4ERd2Fzc2FAbWVtcGhpcy5lZHUwDAYDVR0TAQH/BAIw
ADANBgkqhkiG9w0BAQQFAAOBgQAhUi7KCwfeiJy/4ndpV2IHr4Tw2mt2QMkGrVFC9OgzD10BuNDX
UD4y7qnHVbzZbavIsomxZ4HtNX0NLYNQKTRL2WtSeT2NAIaGSFHXGJDQAHfYX6+ZLnP7MKRU4Ovv
OssPf/rQH71qMtOhnDoGXYpFrpjefQLPoGnmo+PvDz6SGDCCAz8wggKooAMCAQICAQ0wDQYJKoZI
hvcNAQEFBQAwgdExCzAJBgNVBAYTAlpBMRUwEwYDVQQIEwxXZXN0ZXJuIENhcGUxEjAQBgNVBAcT
CUNhcGUgVG93bjEaMBgGA1UEChMRVGhhd3RlIENvbnN1bHRpbmcxKDAmBgNVBAsTH0NlcnRpZmlj
YXRpb24gU2VydmljZXMgRGl2aXNpb24xJDAiBgNVBAMTG1RoYXd0ZSBQZXJzb25hbCBGcmVlbWFp
bCBDQTErMCkGCSqGSIb3DQEJARYccGVyc29uYWwtZnJlZW1haWxAdGhhd3RlLmNvbTAeFw0wMzA3
MTcwMDAwMDBaFw0xMzA3MTYyMzU5NTlaMGIxCzAJBgNVBAYTAlpBMSUwIwYDVQQKExxUaGF3dGUg
Q29uc3VsdGluZyAoUHR5KSBMdGQuMSwwKgYDVQQDEyNUaGF3dGUgUGVyc29uYWwgRnJlZW1haWwg
SXNzdWluZyBDQTCBnzANBgkqhkiG9w0BAQEFAAOBjQAwgYkCgYEAxKY8VXNV+065yplaHmjAdQRw
nd/p/6Me7L3N9VvyGna9fww6YfK/Uc4B1OVQCjDXAmNaLIkVcI7dyfArhVqqP3FWy688Cwfn8R+R
NiQqE88r1fOCdz0Dviv+uxg+B79AgAJk16emu59l0cUqVIUPSAR/p7bRPGEEQB5kGXJgt/sCAwEA
AaOBlDCBkTASBgNVHRMBAf8ECDAGAQH/AgEAMEMGA1UdHwQ8MDowOKA2oDSGMmh0dHA6Ly9jcmwu
dGhhd3RlLmNvbS9UaGF3dGVQZXJzb25hbEZyZWVtYWlsQ0EuY3JsMAsGA1UdDwQEAwIBBjApBgNV
HREEIjAgpB4wHDEaMBgGA1UEAxMRUHJpdmF0ZUxhYmVsMi0xMzgwDQYJKoZIhvcNAQEFBQADgYEA
SIzRUIPqCy7MDaNmrGcPf6+svsIXoUOWlJ1/TCG4+DYfqi2fNi/A9BxQIJNwPP2t4WFiw9k6GX6E
sZkbAMUaC4J0niVQlGLH2ydxVyWN3amcOY6MIE9lX5Xa9/eH1sYITq726jTlEBpbNU1341YheILc
IRk13iSx0x1G/11fZU8xggLnMIIC4wIBATBpMGIxCzAJBgNVBAYTAlpBMSUwIwYDVQQKExxUaGF3
dGUgQ29uc3VsdGluZyAoUHR5KSBMdGQuMSwwKgYDVQQDEyNUaGF3dGUgUGVyc29uYWwgRnJlZW1h
aWwgSXNzdWluZyBDQQIDDD76MAkGBSsOAwIaBQCgggFTMBgGCSqGSIb3DQEJAzELBgkqhkiG9w0B
BwEwHAYJKoZIhvcNAQkFMQ8XDTA1MDEyMDIyMDYzOVowIwYJKoZIhvcNAQkEMRYEFLeURow5kCT/
PIjvxQDkcsaWenQ5MHgGCSsGAQQBgjcQBDFrMGkwYjELMAkGA1UEBhMCWkExJTAjBgNVBAoTHFRo
YXd0ZSBDb25zdWx0aW5nIChQdHkpIEx0ZC4xLDAqBgNVBAMTI1RoYXd0ZSBQZXJzb25hbCBGcmVl
bWFpbCBJc3N1aW5nIENBAgMMPvowegYLKoZIhvcNAQkQAgsxa6BpMGIxCzAJBgNVBAYTAlpBMSUw
IwYDVQQKExxUaGF3dGUgQ29uc3VsdGluZyAoUHR5KSBMdGQuMSwwKgYDVQQDEyNUaGF3dGUgUGVy
c29uYWwgRnJlZW1haWwgSXNzdWluZyBDQQIDDD76MA0GCSqGSIb3DQEBAQUABIIBAI5DZx5NbAg2
0cvrNT74279t6xvspYudfuK81Ryb8ZAJ3152iIKgSpTZroWIvUSzOLj+t3YnRvy7Fb2ZtClkj+dS
vvy+Y1YegzVB33DW1huhjF6t9RQEYYy1xkWir0VJxSMAiyYlmrOIBo2pJXQU85RrzvF1NCAmak8j
AlWDVzdyp4XBvQvs4LtfOgajf4QIkkOXtOVHxDgFDJqxodf03UJ/etZVwep6OBgOaz0cm+K4F6Dh
8hZq9/rSsOedZQ1C5s4vt1Ysz7dztR6N9bdCs1+UKjManw7kjZhcAWlbRlAznmkmNNpRfJMDOxbq
ebGZMAArT9pTIgHXn1zhsdV/mXAAAAAAAAA=

Comparison: X509/SMIME

● Recall the PGP sig:

iD8DBQFDeF2TN5XoxaHnMrsRAv3TAJ9uhsXwvjGORVw166wQuwH8ElceNQCePwiG
0LEN3fzdySwp7OBDZXf8SkE=
=6jIy

● Which would you rather have attached to an
email?

Comparison: X509/SMIME

● SMIME has been around for a long time –
support in Netscape 4

● Never caught on
● I2 trying to revive it

● Potentially useful when one entity is trusted
by everyone.

● Many other great uses for X509 and SSL...

More Info / Sources

● All of this information – with less brevity –
and MUCH more is available at my PGP site:
 http://www.phildev.net/pgp/

● RTFM:
http://www.gnupg.org/gph/en/manual.html

● RFC 3156: MIME Security with OpenPGP
● RFC 2015: MIME Security with Pretty Good

Privacy (PGP)
● RFC 2046: Multipurpose Internet Mail

Extensions (MIME) Part Two: Media Types

Fin

● I'm finally done!
● Questions?
● Comments?
● Heckles?
● Concerns?

●

Thanks for coming!

