
PGP: What, Why, When, Which,
How, and More...

UUASC
02/02/06

(formerly USC LUG 11/17/05)

Phil Dibowitz

What We Will Cover

● (Briefly) What is PGP?
● Why use PGP?
● When to use PGP?
● Which kind of PGP to use and when

(Traditional vs PGP/Mime)
● How to use PGP
● PGP Web of Trust
● Comparisons to X509/SMIME

What We Won't Cover

● How encryption works
● How digital signatures work
● How PGP differs, cryptographically, from

other methods

What is PGP?

● Pretty Good Privacy
● I'm not a history professor
● Non-centralized

WHY?

● Why should I use PGP?

Why: What Can I Do With It?

● Encrypt data to yourself or others
● Digitally verify both unencrypted and

encrypted data: authenticity of content and
author

● Protect your data
● Protect yourself

Let's see how...

Why: Protecting Your Data

● Keep your passwords in one secure place

 gpg –encrypt passwords.txt

Creates passwords.txt.gpg

 gpg –decrypt passwords.txt.gpg

With a passphrase and the key (2-piece
auth!), this dumps the contents to stdout

● Assumes you have keys setup

Why: Protecting Your Data

● Encrypted email – without the key and the
passphrase – no one can read that email

● Lots of support:
 Thunderbird+Enigmail
 Outlook+GPGol
 Apple Mail+GPGMail
 Mutt
 Pine+Pine Privacy Guard
 Evolution

Why: Protecting Yourself

● Signing email – with your public key, anyone
can check you sent it, and it is unmodified.

● Managers: Directives can't be modified or
forged

● Employees: Have proof directives were sent
● “Shutdown server X”
● “Sure, give away my ticket, I can't make it”
● “You have to remove file X to break the

deadlock”
● “Peter is the new guy, he should be granted

access to the data center.”

WHEN?

● When should I use PGP?

When: Encryption

● When you need it:

● Distribute new passwords
● Encrypt your personal password store
● Directives with sensitive data
● Credit card numbers
● Personal messages having to go through

untrusted 3rd parties
● Telling your girlfriend in the next office

something, erm, “personal” via work email

When: Signing: Sometimes

● The sometimes argument

● Signed messages came from you
● Signed messages weren't modified in transit

● Unsigned messages might be from you,
might not

● Unsigned messages might be modified in
transit, might not

● Still vectors for attack

When: Signing: Always

● The always argument

● All messages are from you
● All message guaranteed unmodified
● Unsigned messages can just be /dev/null'd,

or treated with high-suspicion
● No forged email!
● No mis-quoting
● Once it's setup, no work to sign – why not?
● But... what about ugliness? Lack of support?

What kind? We'll cover it.

WHICH?

● Which type of PGP email should I use?

Which: Traditional vs PGP/Mime

● Traditional, aka, “clear-signed” - just a PGP
header and footer, and a signature below
that – all in the body of the email or
document.

● PGP/Mime splits the body and the signature
up so the user always sees the body as
intended. If they support PGP, their client will
use the signature for verification. If not, they'll
just see a small attachment.

Which: Traditional

-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1

This is an email with a PGP signature.

This will go into my presentation on PGP.

PGP is a great and wonderful thing.

Oh, and of course. Hello World!

-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.2 (GNU/Linux)
Comment: Using GnuPG with Thunderbird - http://enigmail.mozdev.org

iD8DBQFD3xIdN5XoxaHnMrsRAhGEAJ4kQqrQeULjd+mHBupiBDq14077TACfYKmm
I7B4drp8B7m3T9HtAvdEfJ8=
=AygA
-----END PGP SIGNATURE-----

Which: PGP/Mime

This is an email with a PGP signature.

This will go into my presentation on PGP.

PGP is a great and wonderful thing.

Oh, and of course. Hello World!

● assuming MIME support (everything but Outlook
Express)

Which: Traditional

● PROS
● Simple: Just text in the body
● Anything can read the message
● Don't need MIME or modern mail readers
● Can be easily verified by news readers, web-

based readers, etc.

CONS
● Messy – hard to read the message without

PGP support
● Obsolete

Which: PGP/Mime

● How does it work? Split the message into
two parts using MIME:

● Body:
Content-type: text/plain
(implies Content-disposition: inline)

● Signature:
Content-type: application/pgp-signature
Content-disposition: attachment

● RFC's 3156, 2015, 2046

Which: PGP/Mime

● PROS
● Anything with MIME support sees the

message clearly, with the signature as an
insignificant attachment (for PGP-inept)

● Can sign a forwarded message with a
signature in it easily (using MIME-
encapsulation)

● Looks cleaner

● CONS
● Non-MIME compliant readers have trouble

Which: Application/PGP

● Horrible wanna-be standard replaced by
PGP/Mime

● Takes a traditional-signed message
● Body is Content-type: application/pgp

and Content-disposition: inline

● Almost nothing displays properly. Only mutt
1.4x ever supported it. Mutt 1.4x used this
when set to “traditional”...

Which: The Decision

● The decision should ultimately be based on
who your readers are:

● What mail client is most common? What
other mail clients are used?

● Are they going to be doing verification? Can
they install a plugin?

● Once you have that...

Which: Support

Which: No, Really Phil,
Which one?

● Assuming the people who will be verifying can
handle either, how do you piss off the PGP-inept
the least?
If most recipients use:

● Outlook Express: (they need help) Traditional so
they can see your email (but consider only signing
as needed)

● Outlook/Pine (where most people aren't verifying):
PGP/Mime – they'll see a clean message inline

● Outlook/Pine (with most people verifying):
Traditional – only way plugins can verify/decrypt

● Thunderbird/Netscape/Mail/Mutt: PGP/Mime –
clean and verifiable

HOW?

● I now know Why, When, Which – and I like it!
But how do I do it?

How: Get PGP

● Windows: GnuPG for windows: gnupg.org
● Linux/Solaris/BSD: GnuPG: gnupg.org
● Mac: MacGPG: macgpg.sf.net

How: Create Keys

● $ gpg –gen-key
● Type:

 (1) DSA and Elgamal (default)
 (2) DSA (sign only)
 (5) RSA (sign only)

● Size: 1024 - 4096
● Expiration
● Real Name, Comment, Email

Phil Dibowitz (Work Key) phil@example.com

● PassPHRASE

● More details at http://www.phildev.net/pgp/

How: Now What?

● Now you can:
Encrypt/decrypt/verify/sign files and keys

● OK, but what about email?!

How: MUA Level

● Thunderbird: Enigmail
(enigmail.mozdev.org)

● Apple Mail: GPGMail (www.sente.ch)
● Mutt: Included
● Outlook: GPGol (www.g10code.com)
● Pine: Pine Privacy Guard (quantumlab.net)
● Evolution: Included

Install instructions:
http://www.phildev.net/pgp/

How: MUA Level

● Configure GnuPG: (in ~/gpg.conf):
 keyserver pgp.mit.edu #only one!
 keyserver-options auto-key-retrieve
Most MUA support multiple servers, i.e.
enigmail.
Add as many as you want. pgp.com is good.

● In your MUA Plugin:
● Traditional or PGP/Mime?
● Sign by default?
● Verify by default!

TRUST

● Who do I trust, how do I trust them, and
why?

Trust: Intro

● Unlike in x509/SSL, trust isn't controlled by
one authority

● Down with the man! No expensive
certificates!

● Multiple signatures == better verification
● Verification by people YOU trust
● More trust requires more work
● Multiple “levels” of signing enable fine-

grained trust
● Private and public trust

Trust: Implicit vs Explicit

● Signing someone's key indicates some level
of trust and/or verification of identity

● You can also add local “trust”
● If a key you receive is signed by a key you

have signed, there is implicit trust there
● If a key you receive is signed by a key you

have locally trusted, there is implicit trust
● Signing a key is also implicit trust
● Explicit trust is rarely used, but neat.

Trust: Signing Keys

● Why: To vouch for the identity of one whose
identity you have checked.

● When: Key signing parties, at the office,
when you meet someone interested, etc.

● How: Check 2 forms of ID, check key
fingerprint, and optionally check the email
address, then sign the key and send it to
them

Trust: Verifying Identity

● ID: At least one photo ID, usually two forms
of some ID. You're saying to the world this
key belongs to a person!

● Fingerprint: Verify the key you're signing
has the fingerprint they have on their local
copy.

● Email: (optional) encrypt an email to them
with a secret word of your choosing and a
number they chose. They must email you
back the word and a number you chose.

Trust: Actually Signing

● gpg –sign-key $KEYID --ask-cert-level

Trust options:
● (0) I will not answer. (default)
● (1) I have not checked at all.
● (2) I have done casual checking.
● (3) I have done very careful checking.

● Email or gpg –send-key

● In gpg.conf: “ask-cert-level”

Trust: Local Trust

● To add local trust: gpg –edit-key $KEYID
● From the gpg shell, “trust”

Trust options:
● (1) I don't know
● (2) I do NOT trust
● (3) I trust marginally
● (4) I trust fully
● (5) I trust ultimately

● “save”

Trust: Local Trust

● In general, only trust your keys at 5
● If you know someone does a very thorough

job verifying identify, trust them at 4, and
you'll trust keys they sign even if you haven't
signed their key, or your sig expires

● Local trust is in a trustdb, no one sees it

● Local signing is another way to do local trust,
we won't cover it...

Trust: Calculated Trust

● So.. uh, this key is signed at 3 by a key that's
signed at 2 by a key that's trusted by my key,
which means I, uhm, what?

● It's complicated, and infinitely tunable, but by
default...

● A key is trusted if it meets both:
 1. It is signed by enough valid keys, meaning one of the following:
 * You have signed it personally,
 * It has been signed by one fully trusted key
 * It has been signed by three marginally trusted keys
 2. The path of signed keys leading from K back to your own key is five
 steps or shorter.

Trust: Example 1

● Phil signs Stewie (full)
● Stewie signs Peter (full)
● Peter signs Brian (full)
● Brian signs Meg (full)
● Meg signs Lois (full)

● Phil trusts all of them

Trust: Example 2

● Phil signs Stewie (marginal)
● Phil signs Meg (marginal)
● Phil signs Peter (marginal)
● Meg signs Chris (full)
● Stewie signs Chris (full)

Phil doesn't yet trust Chris...

● Peter signs Chris (full)
● Phil trusts Chris

Trust: Example 3

● Phil signs Stewie (full)
● Stewie signs Meg (full)
● Meg signs Peter (full)
● Peter signs Brian (full)
● Brian signs Lois (full)
● Lois signs Chris (full)

● Phil trusts everyone except Chris

Trust: Example 4

● Phil signs Brian (marginal)
● Phil signs Peter (marginal)
● Brian signs Peter (marginal)

● Phil trusts Peter since he directly signed it,
even though it's “marginal”

Trust: Tunables

● --max-cert-depth n
How deep the chain go and still be trusted

● --completes-needed n
How many completely trusted keys are
needed

● --marginals-needed n
How many marginally trusted signatures are
needed

Trust: Web of Trust

Trust: Web of Trust

Trust: Signatures

● $ gpg –list-sigs phil@ipom.com
pub 1024D/A1E732BB 2003-09-12
uid Phil Dibowitz <phil@ipom.com>
sig 3 A1E732BB 2004-11-20 Phil Dibowitz <phil@ipom.com>
sig 3 X 8CAFF3DF 2003-09-12 Phil Dibowitz <phil@usc.edu>
sig 3 X 96E6F473 2003-09-12 Garrick Staples <garrick@usc.edu>
sig 2 X 819FD62E 2003-09-24 S. Tyler McHenry <tyler@nerdland.net>
sig 3 X E65FF97B 2003-11-03 Ted Faber <faber@lunabase.org>
sig 3 A1E732BB 2003-09-12 Phil Dibowitz <phil@ipom.com>
sig 3 X 808D0FD0 2003-11-24 Don Armstrong <don@donarmstrong.com>
sig 3 X FEA48B61 2003-11-24 Garrick Staples <garrick@speculation.org>
sig 3 X A4B1D0D4 2003-11-25 John Mullins <mullins@usc.edu>
sig 3 X 5811ED5F 2003-11-25 Carl Hayter <hayter@usc.edu>
sig 3 X EBA65398 2003-11-25 Asbed Bedrossian <asbed@usc.edu>
sig 3 X FC2FC9F0 2003-11-26 Chet Burgess <cfb@usc.edu>
sig 3 AE127015 2003-11-23 Todd A. Lyons (Cannonball) <todd@mrball.net>
sig 3 X 6AFD6695 2003-12-01 Linda Savage <lsavage@usc.edu>
sig 3 C730C0E4 2003-12-04 Harry Tanama (nick name pr0gm3r)
<harry_tanama@yahoo.com>
sig 3 X 398D7394 2003-12-05 Brian Emord (no one) <emord@usc.edu>
...

Trust: The Pretty Picture

● I know geeks like the nifty pictures...

● $ sig3 -d 2 'phil@ipom.com
webmaster@ipom.com' >keys.dot

● $ neato keys.dot -Tps -o keys.ps -v
-Goverlap=scale -Gsplines=true

● $ convert keys.ps keys.jpg
● $ rm keys.ps keys.dot

● Wtf are “sig3” and “neato”?

Trust: Helper Utilities

● sig2dot – Takes the output of gpg –list-sigs
and creates a “dot” file.
http://www.chaosreigns.com/code/sig2dot/

● sig3 – same idea as sig2dot, but with better
support for large keychains. Written by Carl
Hayter from USC.
http://www.phildev.net/pgp/

● neato is part of the graphviz package
Takes data files and creates postscript plots.

● Convert is part of ImageMagick

COMPARISON: X509/SMIME

● How does it compare?

Comparison: X509/SMIME

● SMIME requires a certificate authority for
your X509 certificates

● One entity must be trusted by everyone, or it
doesn't work

● Usually costs money
● SMIME signatures are vastly longer...

Comparison: X509/SMIME

● MIAGCSqGSIb3DQEHAqCAMIACAQExCzAJBgUrDgMCGgUAMIAGCSqGSIb3DQEHAQAAoIIGFjCCAs8w
ggI4oAMCAQICAww++jANBgkqhkiG9w0BAQQFADBiMQswCQYDVQQGEwJaQTElMCMGA1UEChMcVGhh
d3RlIENvbnN1bHRpbmcgKFB0eSkgTHRkLjEsMCoGA1UEAxMjVGhhd3RlIFBlcnNvbmFsIEZyZWVt
YWlsIElzc3VpbmcgQ0EwHhcNMDQwNTA0MDMyMDAyWhcNMDUwNTA0MDMyMDAyWjBDMR8wHQYDVQQD
ExZUaGF3dGUgRnJlZW1haWwgTWVtYmVyMSAwHgYJKoZIhvcNAQkBFhF3YXNzYUBtZW1waGlzLmVk
dTCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBANm8wiPSE3aeqFpA2o/adOYCZa2T7oHi
fjZE8IIK2EXtgcBZmC2AmmPvPQTtU3sB4AV4bBaKT75qefvNQMSYS2mZjTuCiUSFvLgL8J/pTwBf
GWquvXJH+Q57e1mqkSTKoqSRWwA2GsZ1u7YytAaeiyB5p3FiWHC/zOT8V0CB9NYFqn4rNvL5NlEn
keK4y42/aMDX0XdywR+Bep1vUfRMBIIudq/f49hLUgDbfuY5x44Z/RXbjBH6eCIhCmyhgmRD/fcg
/cHwkwESa4Hisz3UErTsrZShEkuloG8W5SJSRFzXh3hqOibQxiU2bN0Gq3q9UD3kBFuXOuG2PGVL
oha/QfUCAwEAAaMuMCwwHAYDVR0RBBUwE4ERd2Fzc2FAbWVtcGhpcy5lZHUwDAYDVR0TAQH/BAIw
ADANBgkqhkiG9w0BAQQFAAOBgQAhUi7KCwfeiJy/4ndpV2IHr4Tw2mt2QMkGrVFC9OgzD10BuNDX
UD4y7qnHVbzZbavIsomxZ4HtNX0NLYNQKTRL2WtSeT2NAIaGSFHXGJDQAHfYX6+ZLnP7MKRU4Ovv
OssPf/rQH71qMtOhnDoGXYpFrpjefQLPoGnmo+PvDz6SGDCCAz8wggKooAMCAQICAQ0wDQYJKoZI
hvcNAQEFBQAwgdExCzAJBgNVBAYTAlpBMRUwEwYDVQQIEwxXZXN0ZXJuIENhcGUxEjAQBgNVBAcT
CUNhcGUgVG93bjEaMBgGA1UEChMRVGhhd3RlIENvbnN1bHRpbmcxKDAmBgNVBAsTH0NlcnRpZmlj
YXRpb24gU2VydmljZXMgRGl2aXNpb24xJDAiBgNVBAMTG1RoYXd0ZSBQZXJzb25hbCBGcmVlbWFp
bCBDQTErMCkGCSqGSIb3DQEJARYccGVyc29uYWwtZnJlZW1haWxAdGhhd3RlLmNvbTAeFw0wMzA3
MTcwMDAwMDBaFw0xMzA3MTYyMzU5NTlaMGIxCzAJBgNVBAYTAlpBMSUwIwYDVQQKExxUaGF3dGUg
Q29uc3VsdGluZyAoUHR5KSBMdGQuMSwwKgYDVQQDEyNUaGF3dGUgUGVyc29uYWwgRnJlZW1haWwg
SXNzdWluZyBDQTCBnzANBgkqhkiG9w0BAQEFAAOBjQAwgYkCgYEAxKY8VXNV+065yplaHmjAdQRw
nd/p/6Me7L3N9VvyGna9fww6YfK/Uc4B1OVQCjDXAmNaLIkVcI7dyfArhVqqP3FWy688Cwfn8R+R
NiQqE88r1fOCdz0Dviv+uxg+B79AgAJk16emu59l0cUqVIUPSAR/p7bRPGEEQB5kGXJgt/sCAwEA
AaOBlDCBkTASBgNVHRMBAf8ECDAGAQH/AgEAMEMGA1UdHwQ8MDowOKA2oDSGMmh0dHA6Ly9jcmwu
dGhhd3RlLmNvbS9UaGF3dGVQZXJzb25hbEZyZWVtYWlsQ0EuY3JsMAsGA1UdDwQEAwIBBjApBgNV
HREEIjAgpB4wHDEaMBgGA1UEAxMRUHJpdmF0ZUxhYmVsMi0xMzgwDQYJKoZIhvcNAQEFBQADgYEA
SIzRUIPqCy7MDaNmrGcPf6+svsIXoUOWlJ1/TCG4+DYfqi2fNi/A9BxQIJNwPP2t4WFiw9k6GX6E
sZkbAMUaC4J0niVQlGLH2ydxVyWN3amcOY6MIE9lX5Xa9/eH1sYITq726jTlEBpbNU1341YheILc
IRk13iSx0x1G/11fZU8xggLnMIIC4wIBATBpMGIxCzAJBgNVBAYTAlpBMSUwIwYDVQQKExxUaGF3
dGUgQ29uc3VsdGluZyAoUHR5KSBMdGQuMSwwKgYDVQQDEyNUaGF3dGUgUGVyc29uYWwgRnJlZW1h
aWwgSXNzdWluZyBDQQIDDD76MAkGBSsOAwIaBQCgggFTMBgGCSqGSIb3DQEJAzELBgkqhkiG9w0B
BwEwHAYJKoZIhvcNAQkFMQ8XDTA1MDEyMDIyMDYzOVowIwYJKoZIhvcNAQkEMRYEFLeURow5kCT/
PIjvxQDkcsaWenQ5MHgGCSsGAQQBgjcQBDFrMGkwYjELMAkGA1UEBhMCWkExJTAjBgNVBAoTHFRo
YXd0ZSBDb25zdWx0aW5nIChQdHkpIEx0ZC4xLDAqBgNVBAMTI1RoYXd0ZSBQZXJzb25hbCBGcmVl
bWFpbCBJc3N1aW5nIENBAgMMPvowegYLKoZIhvcNAQkQAgsxa6BpMGIxCzAJBgNVBAYTAlpBMSUw
IwYDVQQKExxUaGF3dGUgQ29uc3VsdGluZyAoUHR5KSBMdGQuMSwwKgYDVQQDEyNUaGF3dGUgUGVy
c29uYWwgRnJlZW1haWwgSXNzdWluZyBDQQIDDD76MA0GCSqGSIb3DQEBAQUABIIBAI5DZx5NbAg2
0cvrNT74279t6xvspYudfuK81Ryb8ZAJ3152iIKgSpTZroWIvUSzOLj+t3YnRvy7Fb2ZtClkj+dS
vvy+Y1YegzVB33DW1huhjF6t9RQEYYy1xkWir0VJxSMAiyYlmrOIBo2pJXQU85RrzvF1NCAmak8j
AlWDVzdyp4XBvQvs4LtfOgajf4QIkkOXtOVHxDgFDJqxodf03UJ/etZVwep6OBgOaz0cm+K4F6Dh
8hZq9/rSsOedZQ1C5s4vt1Ysz7dztR6N9bdCs1+UKjManw7kjZhcAWlbRlAznmkmNNpRfJMDOxbq
ebGZMAArT9pTIgHXn1zhsdV/mXAAAAAAAAA=

Comparison: X509/SMIME

● Recall the PGP sig:

iD8DBQFD3xIdN5XoxaHnMrsRAhGEAJ4kQqrQeULjd+mHBupiBDq14077TACfYKmm
I7B4drp8B7m3T9HtAvdEfJ8=
=AygA

● Which would you rather have attached to an
email?

Comparison: X509/SMIME

● SMIME has been around for a long time –
support in Netscape 4

● Never caught on
● I2 trying to revive it

● Potentially useful when one entity is trusted
by everyone.

● Many other great uses for X509 and SSL...

More Info / Sources

● All of this information – with less brevity –
and MUCH more is available at my PGP site:
 http://www.phildev.net/pgp/

● RTFM:
http://www.gnupg.org/gph/en/manual.html

● RFC 3156: MIME Security with OpenPGP
● RFC 2015: MIME Security with Pretty Good

Privacy (PGP)
● RFC 2046: Multipurpose Internet Mail

Extensions (MIME) Part Two: Media Types

Things To Take With You

● Always sign – it'll save your ass
● Encrypt as needed – it'll also save your ass
● For most people PGP/Mime is the best to

use (unless everyone you know uses OE)
● Good MUAs will do all the work for you:

Thunderbird, Apple Mail, mutt

Fin

● I'm finally done!
● Questions?
● Comments?
● Heckles?
● Concerns?

● http://www.phildev.net/pgp/

 Thanks for coming!

